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SUMMARY

We derive the asymptotic power function of the score test for detecting a common relative risk
greater than unity from multiple 2 x 2 tables and formulate methods of sample size determination
for use when designing stratified prospective studies. The stratified score test is more efficient than
the unstratified test when the latter is unbiased.

1. Introduction

A parameter of major interest in cohort studies (e.g., vaccine trials and animal bioassay experi-
ments) is the relative risk, the ratio of two binomial probabilities. Various approximate methods
for interval estimation of the relative risk for a single 2 x 2 contingency table have been presented
by, e.g., Noether (1957), Katz et al. (1978), Koopman (1984), Mee (1984), Miettinen and Nurmi-
nen (1985), and Bedrick (1987). When more than one 2 x 2 table is involved in a study, several
authors, e.g., Gart (1985) and Gart and Nam (1988), have suggested interval estimation of a com-~
mon relative risk and a test of significance for detecting a relative risk larger than unity. Their
method, which possesses many desirable statistical properties, was derived using the general the-
ory of Bartlett (1953). Power and sample size related to the test of a significance has not been
thoroughly investigated. They are important in assessing power or in determining sample size re-
quirements for designing a stratified study. In Section 2 of this paper, we present the asymptotic
power of the stratified score test and a sample size formula for prospective studies and, in Section
3, we compare the stratified and unstratified tests. Section 4 presents a numerlcal example using
actual data. Section 5 contains concluding remarks.

2. Power and Sample Size of Score Test of ¢ = 1

Consider J pairs of independent binomial variates, xo; and 1, with corresponding parameters
po; and p1; with sample sizes ng; and ni; for j = 1,2,...,J. Let ¢;; = 1 —p;; for i = 0,1 and
j=1,2,...,J. Summation is denoted by dots, e.g., x.; = zg; + x1; and n.; = ng; +n1;. Ratios of
the two binomial parameters are denoted ¢; = p1;/po; for j =1,2,...,J. Under a common ratio
across strata, ¢; = ¢ for j = 1,2,...,J. Gart (1985) provides a statistic for testing ¢ =1 as

1/2

J J
= {(@; —n;;)/d;} / Y Amignopi/(nid)}|
=1 p
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Key words: Asymptotic power; Relative efficiency; Relative risk; Sample size; Score test; Stratified
prospective studies.

331




Biometrics, March 1998

where §; = z.;/n; and §; = 1 — p; for every j. The above statistic, based on the likelihood
score, was equivalent to that of Radhakrishna (1965), who extended Cochran’s statistic (1954) for
a common odds ratic to the common relative risk. The test is known to be locally optimal. Let
u; = (15 — nB;)/ 45, vj = nyynoidi/(n.jd;), and w; = nyjngj/n.; for every j. As ny;'s increase
for fixed J, Gart’s test statistic is asymptotically normal. The asymptotic power of the one-sided
test for ¢ = 1 against a specific value of ¢(> 1) is expressed as

Pr {z 2 Z(1-a) | Hl} =1-&(u), o))

where ® is the cumulative normal distribution,

1/2 1/2

U= ZE(v])O '2(1_a) —ZE(uj)l / ZE(UJ)l s
J Y] J

E(vj)l = w;j [’nAj{n.j — (nljd) + noj)poj}—l -1), E(’Uj)o = ’wjpoj/q()j, and E(uj)l = nljnoj(qﬁ -
1)po;/(n1jq1; + nojqoy) for j = 1,2,...,J. The form (1) is analogous to Nam (1992, equation
(2.1)). The approximate sample size required for a specific power, 1 — 3, is found by solving the
equation

1/2 1/2

J J J
D> B =14 Y E(v)o 1oy +4 D_Bloih $#1-p)
j=1 j=1

=1

from (1). Define design fractions as t; = n.;/N, where N = Yn.; and s; = n1;/n.j, so that
ny; = t;5;N and ng; = t;(1 — s;)N for j = 1,2,...,J. The explicit form of the approximate
sample size formula is

2
N={&” 20+ 20 p ) [H6-1 ), @

where ¢; = th.s]'(l - Sj)[{q()j — (¢ — 1)Sjp0]’}_l —1], ¢¢ = Ethj(]. - Sj)poj/qoj, and ¢y =
St;9;(1—5;)poj /{q05—(¢—1)s;p0; }. Using the definition by Stuart (1954), the asymptotic efficiency
of the score test is

2

J J
(A.E.)s = { OE Zuj /0¢ / var Zuj
j=1

=1 ¢=1 =1
= {Zt;5;(1 — 55)p0;/q0; } N. ®3)

Since s;(1 — s;) < 1/4 for every j, the asymptotic efficiency (3) is maximized when s; = 1/2
for every j. Equal sample size allocation to test and control groups within each stratum is the
most efficient, which translates into the best in terms of power or sample size. Calculations of
approximate sample sizes for stratified prospective studies under a perfectly balanced design for
two strata are summarized in Table 1. The sample size required for a specific power of the test has
a strong inverse relation with ¢ — 1. It is, also, highly sensitive to baseline probabilities.

3. Unstratified Score Test
The score test for ¢ — 1 based on pooled 2 x 2 tables can be written as

zp = (x1. — nl.ﬁ)/(nl.no,ﬁé/N)l/z,

where p = z../N and § = 1 — p. Rewrite this statistic as
zp =1/ {var(f)}¢=1 ,

where { = $1 — o with p; = ;. /n; for i = 0,1, and var(£)¢=1 = (1/n1. + 1/np.)pg. The
expectation and variance of £ are E(f) = p; — po and var(f) = (p1g1/n1. + podo/no.), where
p1 = (%t;s;p05)0/(5tjs;) and pg = {2t;(1 — s;)po;}/{1 — (5t;5;)}. The test based on pooled
data is biased except under a balanced design. The asymptotic efficiency of the score test based on
pooled data is
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Table 1
Approzimate sample sizes required for 80% power of the efficient score test for ¢ =
1 against ¢ = (1.5,2.0,3.0) at a = 0.05 under the perfectly balanced design when
two strata are considered (N = total sample size and n = sample size of each group)

Baseline probabilities N (n)

po1 Po2 ¢=15 ¢=2.0 ¢=30

0.05 0.1 1258 (315) 324 (81) 84 (21)
0.2 646 (162) 157 (39) 36 (9)
0.3 376 (94) 84 (21) 15 (4)

0.10 0.2 543 (136) 133 (33) 31 (8)
0.3 339 (85) 76 (19) 14 (4)
0.4 212 (53) 41 (10) —

0.20 0.3 270 (68) 61 (15) 11 (3)
0.4 182 (46) 36 (9) —

0.30 0.4 152 (38) 30 (8) —

(A.E.)p = {8E(E) /0¢}51/{var(f)}g=1 = thPOj N/ 4 thQOj (4)
J J

under s; = 1/2 for every j. We can show that (A.E.)s > (A.E.)p (Appendix), i.e., the asymptotic
efficiency of the stratified score test is greater than or equal to that of the unstratified test. Equality
holds only if pg; = po for every j, i.e., no effect of the stratification. Gart (1992) pointed out that
the variance of the efficient stratified estimator of ¢ is smaller than the variance of the pooled
estimator when the latter is unbiased. Weinberg (1985) reported a similar finding for the case of
two strata. These findings are consistent with the above result of the asymptotic relative efficiency
of the score test based on stratified data compared to the test on pooled data. The sample size for
prospective studies using the stratified test is smaller than or equal to that using the unstratified
test under a balanced design.

4. An Example

Innes et al. (1969) tested the tumorigenicity of Avadex (a fungicide) by continuous oral adminis-
tration to both males (M) and females (F) of two hybrid strains of mice (X and Y). Frequencies of
pulmonary tumors among test mice for categories XM, XF, YM, and YF were 4/16, 2/16, 4/18,
and 1/15, and their respective controls were 5/79, 3/87, 10/90, and 3/82. We summarize a statis-
tical analysis in Table 2. Relative risks for development of pulmonary tumors among test animals
to controls by strain and sex were 3.95, 3.63, 2.00, and 1.82, respectively. Assuming the homo-
geneity of relative risks, we obtain an initial value of the MLE of a common relative risk (Tarone,
1981) as q’)(o = 2.66. Corresponding estimated tumor rates among controls by strain and sex are
B = 0.075, 5 = 0.039, 53 =0.100, and () = 0.033 from, .g., Gart (1985, equation (2.1)). It
requires two iterations to converge to the MLE, qb = ¢(2) = 2.65. The MLEs of the nuisance param-
eters are identical to those based on initial estimates to three decimal points. The score statistic for
testing homogeneity (Gart, 1985) is X7 = 0.954 (p = 0.81). With these data, there is no evidence
to reject the hypothesis of homogeneity of relative risks across strata. Therefore, we can make
inference about the common relative risk ¢ using all information available from combining the four
2 x 2 tables. The 95% confidence interval for ¢ is (1.35, 5.03) using a method by Gart and Nam
(1988). The score method for testing ¢ = 1 is z = 2.88 (p = 0.002), and the exact test also yields a
very high degree of significance. We may conclude that the fungicide tested is tumorigenic for mice.
Note that individual 95% confidence intervals are considerably wider and only one of four intervals
does not contain one. The Pearson chi-square test with four degrees of freedom is far less sensitive
(p = 0.049) than the score test. The test based on pooled data is highly significant. However, we
are against the use of pooled data in general because it may lead to a statistical fallacy (see, e.g.,
Simpson, 1951; Blyth, 1972; Bishop, Fienberg, and Holland, 1975).

Suppose that the probabilities of a pulmonary tumor among control mice by strain and sex are
po = 0.06, po2 = 0.03, po3 = 0.11, and pps = 0.04. Assuming homogeneity among relative risks,
we obtain the sample size required for 80% power of the score test for ¢ = 1 against ¢ = 2.65 as
N =156 (i.e., n1j = ng; = 20) from (2) under a perfectly balanced design, i.e., {; = 1/4 and 5; =
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Table 2
Statistical analy.

ses of carcinogenesis bioassay experiments
Test mice Contro] mice

T —— ——_onroimice
Strain Sex  With tumors® Total With tumors®*  Tota] Relative risk 95% CI
xb M 4 16 5 79 3.95 (1.22, 11.97)
X F 2 16 3 87 3.63 (0.75, 16.49)
Yb M 4 18 10 90 2.00 (0.70, 5.16)
Y F 1 15 3 82 1.82 (0.27, 11.48)
Total 11 65 21 338
Homogeneity test: x§ =0.954 (p = 0.81)
Score test for ¢ = 1 against ¢ > 1: z = 2.88 (p = 0.002)
Combined analysis under a common relative risk: ¢ = 2.65
95% C.1. for ¢: (1.35, 5.03)
& Pulmonary tumors,
b X, strain X = (C57BL/6XC3H/ANF)FL; Y, strain Y — (C57BL/6XAKR)F1.

1/2 for every j. Similarly, for detecting two- and three-fold increases in relative risk with 80%
power, we need N = 411 (ny; = ng; = 51) and 107 (ni; = ng; = 13), respectively. The sample size
recommended for a standard carcinogenesis testing protocol (Sontag, Page, and Saffiotti, 1976) is
shown to be proper for detecting a two-fold or greater increase with good power.

5. Remarks

score test for the same power.
Sample size determination in stratj
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APPENDIX
(A.E)s > (A.E.)p Under Balanced Designs

The ratio of two asymptotic efficiencies, (3) and (4}, is

3 tias / dotvi | (AD
j ]

The expansion of the numerator of (A.1) is expressed as

Ny = Ztﬂmg + ZZt tx(Pojgok/ 05 + Pokqo; /qok)- (A.2)

i<k

(AE)s/(AE)p = > (tpoj/a0;)
J

Since ;t; = 1 from the definition in Section 2, the denominator of (A.1) is written as

= <Zt]'> (thp()j) Zt po; + Zzt]tk(pOJ +p0k) (A3)
j j i<k
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From (A.2) and (A.3), the difference between the numerator and denominator is

Nu- = De. = >~ t;te{po;(aox — 905)/05 + Pok (d0; — dow)/ ok}
i<k
=3 t5tr{po;(poj — pok)/ 905 + Por(Por ~ Po;)/q0k}
i<k
=D " titi{(po; — pok)(po;/d0; ~ Por/a0k)}
j<k
= Z thtk(pOj — pok)?/(g0590%) 2 0. (A4)
i<k
Therefore, (A.E.)s > (A.E.)p from (A.1) and (A.4). Note that the equality holds when py; = Dok
for every j and k.




